Numerical integrators based on modified differential equations
نویسندگان
چکیده
منابع مشابه
Numerical integrators based on modified differential equations
Inspired by the theory of modified equations (backward error analysis), a new approach to high-order, structure-preserving numerical integrators for ordinary differential equations is developed. This approach is illustrated with the implicit midpoint rule applied to the full dynamics of the free rigid body. Special attention is paid to methods represented as B-series, for which explicit formula...
متن کاملNumerical Methods for differential Games Based on Partial differential equations
In this paper we present some numerical methods for the solution of two-persons zero-sum deterministic differential games. The methods are based on the dynamic programming approach. We first solve the Isaacs equation associated to the game to get an approximate value function and then we use it to reconstruct approximate optimal feedback controls and optimal trajectories. The approximation sche...
متن کاملGIP integrators for Matrix Riccati Differential Equations
Matrix Riccati Differential Equations (MRDEs) are initial value problems of the form: X 0 1⁄4 A21 XA11 þ A22X XA12X; Xð0Þ 1⁄4 X0: These equations arise frequently throughout applied mathematics, science, and engineering. It can happen that even when the Aij are smooth functions of t or constant, the solution X may have a singularity or even infinitely many singularities. This paper shows severa...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملSolving Differential Equations Using Modified VIM
In this paper a modification of He's variational iteration method (VIM) has been employed to solve Dung and Riccati equations. Sometimes, it is not easy or even impossible, to obtain the first few iterations of VIM, therefore, we suggest to approximate the integrand by using suitable expansions such as Taylor or Chebyshev expansions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2007
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-07-01967-9